E80 Spring 2014

Op Amps Circuits

Agenda: Operational Amplifier

Recap: Non-inverting amplifier and unity gain buffer Inverting amplifier (multiplication)

- Summing amplifier (add and subtract)

Differentiator and integrator
Difference amplifier

- Instrumentation amplifier
- Transimpedance amplifier
- Active filters

Recap: Opamp Model

$$
\text { (1) } \mathrm{v}_{+}=\mathrm{v}_{-} \quad \text { (2) } i_{+}=0, \quad i_{-}=0
$$

Recap: Non-inverting Amplifier

- Non-inverting amplifier is designed to produce positive voltage gain

Inverting amplifier

- Inverting amplifier reverses the polarity of the input signal while amplifying (or attenuating) it

Summing amplifier

- Summing Amplifier is an op amp circuit that combines several inputs and produces an output that is the weighted sum of the inputs.

Q: Is it possible to construct a non-inverting summing amp?

Opamp Circuit With Capacitor

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Inverting amplifier

What does this circuit do? How is Vo related to V_{1} ?

Opamp Circuit With Capacitor

Integrator circuit

$$
v_{o}(t)=-\frac{1}{R C} \int_{0}^{t} v_{i}(\tau) d \tau+v_{C}(0)
$$

What does this circuit do? How is Vo related to Vi?

Example

What does the output waveform look like?

Solving Differential Equation Using Opamp Circuit

Difference Amplifier

- Difference amplifier is a device that amplifies the difference between two inputs but rejects any signals common to the two inputs.

Instrumentation Amplifier

Instrumentation Amplifier Application

Small differential signals riding on larger common-mode signals

Amplified differential signal, No common-mode signal
(1) Only amplify difference
(2) Infinite Input resistance
\& zero Output resistance

Transimpedance amplifier for photodiode

- Much easier to measure voltage than current
- Provide large amplification

Active filter

- RC and OpAmp (<1MHz, bulky inductor in RLC filters)
- $1^{\text {st }}$ order filters
- Low pass
- High pass
- Inverting
- Non-inverting
- $2^{\text {nd }}$ order low pass filter

Active Filter Example

Active Filter Example

$$
H(j \omega)=\frac{1+R_{2} / R_{3}}{1+j \omega R_{1} C_{1}}
$$

Non-inverting $1^{\text {st }}$ order low pass active filter

Active Filter Example

Say $\mathrm{R}_{\mathrm{f}}>\mathrm{R}_{\mathrm{i}}$

$$
H(j \omega)=-\frac{j \omega R_{f} C_{i}}{1+j \omega R_{i} C_{i}}
$$

Active Filter Example

Active Filter Example

Say $R_{2}>R_{1}$

$$
H(j \omega)=\frac{-j \omega R_{2} C_{1}}{\left(1+j \omega R_{1} C_{1}\right)\left(1+j \omega R_{2} C_{2}\right)}
$$

Bandpass filter

Sketch Bode Plot

$2^{\text {nd }}$ order Active Filter Sallen-Key Low Pass Filter

Find frequency response function of unity-gain Sallen Key Topology

