E80 Spring 2014

Op Amps Circuits

Agenda: Operational Amplifier

- Recap: Non-inverting amplifier and unity gain buffer
- Inverting amplifier (multiplication)
- Summing amplifier (add and subtract)
- Differentiator and integrator
- Difference amplifier
- Instrumentation amplifier
- Transimpedance amplifier
- Active filters

Recap: Opamp Model

Recap: Non-inverting Amplifier

Non-inverting amplifier is designed to produce positive voltage gain

Inverting amplifier

 Inverting amplifier reverses the polarity of the input signal while amplifying (or attenuating) it

Summing amplifier

 Summing Amplifier is an op amp circuit that combines several inputs and produces an output that is the weighted sum of the inputs.

Q: Is it possible to construct a non-inverting summing amp?

Opamp Circuit With Capacitor

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Inverting amplifier

What does this circuit do? How is *V*o related to *V*i?

Opamp Circuit With Capacitor

Integrator circuit

+

 v_o

$$v_o(t) = -\frac{1}{RC} \int_0^t v_i(\tau) d\tau + v_C(0)$$

What does this circuit do? How is Vo related to Vi?

Example

What does the output waveform look like?

Solving Differential Equation Using Opamp Circuit

10

Difference Amplifier

 Difference amplifier is a device that amplifies the difference between two inputs but rejects any signals common to the two inputs.

Instrumentation Amplifier

Instrumentation Amplifier Application

Small differential signals riding on larger common-mode signals

Instrumentation amplifier

(1) Only amplify difference(2) Infinite Input resistance& zero Output resistance

Amplified differential signal, No common-mode signal

Transimpedance amplifier for photodiode

- Much easier to measure voltage than current
- Provide large amplification

Active filter

- RC and OpAmp (<1MHz, bulky inductor in RLC filters)
- 1st order filters
 - Low pass
 - High pass
 - Inverting
 - Non-inverting
- 2nd order low pass filter

20

2nd order Active Filter Sallen-Key Low Pass Filter

Find frequency response function of unity-gain Sallen Key Topology

